A Conservative and Monotone Mixed–Hybridized Finite Element Approximation of Transport Problems in Heterogeneous Domains

نویسندگان

  • Marco Brera
  • Joseph W. Jerome
  • Yoichiro Mori
  • Riccardo Sacco
چکیده

In this article, we discuss the numerical approximation of transport phenomena occurring at material interfaces between physical subdomains with heterogenous properties. The model in each subdomain consists of a partial differential equation with diffusive, convective and reactive terms, the coupling between each subdomain being realized through an interface transmission condition of Robin type. The numerical approximation of the problem in the two–dimensional case is carried out through a dual mixed–hybridized finite element method with numerical quadrature of the mass flux matrix. The resulting method is a conservative finite volume scheme over triangular grids, for which a discrete maximum principle is proved under the assumption that the mesh is of Delaunay type in the interior of the domain and of weakly acute type along the domain external boundary and internal interface. The stability, accuracy and robustness of the proposed method are validated on several numerical examples motivated by applications in Biology, Electrophysiology and Neuroelectronics.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Mass Conservative Method for Numerical Modeling of Axisymmetric flow

In this paper, the cell-centered finite volume method (CC-FVM) has been presented to simulate the axisymmetric radial flow toward a pumping well. The model is applied to the unstructured triangular grids which allows to simulate inhomogeneous and complex-shaped domains. Due to the non-orthogonality of the irregular grids, the multipoint flux approximation (MPFA) methods are used to discretize t...

متن کامل

A boundary element/finite difference analysis of subsidence phenomenon due to underground structures

Analysis of the stresses, displacements, and horizontal strains of the ground subsidence due to underground excavation in rocks can be accomplished by means of a hybridized higher order indirect boundary element/finite difference (BE/FD) formulation. A semi-infinite displacement discontinuity field is discretized (numerically) using the cubic displacement discontinuity elements (i.e. each highe...

متن کامل

A Non-mortar Mixed Finite Element Method for Elliptic Problems on Non-matching Multiblock Grids a Non-mortar Mixed Finite Element Method for Elliptic Problems on Non-matching Multiblock Grids 1

We consider the approximation of second order elliptic equations on domains that can be described as a union of sub-domains or blocks. We assume that a grid is deened on each block independently, so that the resulting grid over the entire domain need not be conforming (i.e., match) across the block boundaries. Several techniques have been developed to approximate elliptic equations on multibloc...

متن کامل

A 3d Mixed Finite-element Approximation of the Semiconductor Energy-transport Equations

The stationary energy-transport equations for semiconductors in three space dimensions are numerically discretized. The physical variables are the electron density, the energy density, and the electric potential. Physically motivated mixed Dirichlet-Neumann boundary conditions are employed. The numerical approximation is based on an hybridized mixed finite-element method using Raviart-Thomas el...

متن کامل

Locally Conservative Fluxes for the Continuous Galerkin Method

The standard continuous Galerkin (CG) finite element method for second order elliptic problems suffers from its inability to provide conservative flux approximations, a much needed quantity in many applications. We show how to overcome this shortcoming by using a two step postprocessing. The first step is the computation of a numerical flux trace defined on element interfaces and is motivated b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010